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A B S T R A C T   

Insects contribute considerably to global crop pollination, with pollination deficits being documented for mul-
tiple entomophilous or pollinator-dependent crops. Different cultivars of crops are being cultivated within and 
across production regions, so it is essential to understand the cultivar variability of pollination deficits. Here, we 
used a dataset from 286 sites from multiple production regions to develop a synthesis on pollination deficits in 
two widely cultivated highbush blueberry cultivars, ‘Bluecrop’ and ‘Duke’. Additionally, we determined if bee 
visitation or bee richness reduces pollination deficits in these cultivars. On average, neither cultivar showed 
pollination deficits regarding fruit set. However, for ‘Bluecrop’ we found pollination deficits for berry weight and 
seed set, which was not the case for ‘Duke’. Increasing total bee visitation reduced pollination deficits of both 
berry weight and seed set for ‘Bluecrop’. More specifically, a non-linear, negative exponential model best pre-
dicted this relation between bee visitation and pollination deficits. Our results highlight that pollination deficits 
and responses to pollinator visitation are variable between different cultivars of a single crop, which suggests 
opportunities to use certain cultivars that are less dependent on insect-mediated pollination in landscapes and 
regions where pollination services have been compromised. In addition, the non-linear response between bee 
visitation and pollination deficits suggests that optimal bee visitation rates need to be determined to improve 
pollination management and crop yield and to support accurate economic valuations of pollination services.  
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1. Introduction 

Safeguarding global food supplies requires an understanding of how 
biotic and abiotic variables mediate crop production (Tamburini et al., 
2019, 2020). While foraging on flowers, multiple insect species 
contribute to pollination by transferring pollen from flower to flower. As 
such, both wild pollinators and managed bees provide considerable 
pollination services to crops (Garibaldi et al., 2013; Pisman et al., 2022; 
Eeraerts et al., 2023a). Recent analyses have shown that pollination 
success increases non-linearly with crop flower visitation by both honey 
bees and wild pollinators (Nicholson and Ricketts, 2019; Reilly et al., 
2020; Chabert et al., 2022). This suggests that determining optimal 
flower visitation rates of key crop pollinators is necessary for 
cost-effective management of crops to ensure high levels of pollination 
and crop yield (see Garibaldi et al., 2020; Eeraerts, 2023). 

Pollen limitation, or pollination deficit, is a lack of pollen quantity or 
quality deposited onto stigmas that restricts fruit and/or seed produc-
tion below the potential maximum level (Ashman et al., 2004; Harder 
and Aizen, 2010). There is increasing evidence that pollination deficits 
limit crop yield in entomophilous crops, although the extent of these 
pollination deficits varies by crop and region (Reilly et al., 2020; Garratt 
et al., 2021; Olhnuud et al., 2022). The compatibility system, growth 
form (herbaceous vs woody), flower size, insect visitation, and ovule 
number per flower are among key traits determining the magnitude of 
pollination deficits and the extent to which insect-mediated pollination 
can reduce these deficits (Knight et al., 2005; Rodger and Ellis, 2016; 
Bennett et al., 2020; Rodger et al., 2021; Aizen et al., 2023). Addition-
ally, multiple case studies have found that pollination deficits and the 
pollination service provided by insects are variable across cultivars of a 
single crop (Benjamin and Winfree, 2014; Button and Elle, 2014; 
Hudewenz et al., 2014; Bishop et al., 2020; Burns and Stanley, 2022). 
The latter suggests that different cultivars of a crop can also have vari-
able pollination requirements. However, in recent syntheses this cultivar 
effect has often been confounded with study ID or region effects, 
prompting the need for further research to disentangle these compo-
nents (Bishop and Nakagawa, 2021; Garratt et al., 2021; Olhnuud et al., 
2022). 

Highbush blueberry cultivation includes northern (Vaccinium cor-
ymbosum) and southern (V. corymbosum interspecific hybrids) highbush 
blueberry cultivars (hereafter “blueberry”). Blueberry is an important 
crop with production expanding in many parts of the world, including 
North and South America, Asia, Australia, and Europe (Eeraerts et al., 
2023a). Flower visitation by honey bees and wild bees is vital for 
adequate pollen transfer, effective pollination and consequent fruit 
production (DeVetter et al., 2022; Eeraerts et al., 2023a). Blueberry is 
self-compatible, meaning ovules can be fertilized by both self-pollen and 
cross-pollen. Yet, blueberry is partly self-sterile, meaning some of the 
embryos fertilized by self-pollen may abort at a higher rate than 
cross-pollen, and this degree of self-sterility is variable across cultivars 
due to an early-acting inbreeding depression (DeVetter et al., 2022). 
Blueberry pollination research has focused on a relatively small number 
of cultivars across the world (Eeraerts et al., 2023a). Hence, compiling 
the data of pollination research of the main cultivars provides an op-
portunity to use blueberry as a model system for separating 
cultivar-effects of pollination deficits and pollination services from other 
study- or region-specific effects. 

As the cultivated area of pollinator-dependent crops, and blueberry 
in particular, is increasing globally (Aizen et al., 2019; Eeraerts et al., 
2023a), it is essential to understand if pollination deficits are variable 
among different cultivars of a single crop and, if so, whether different 
cultivars need differentiated pollinator management to mitigate these 
pollination deficits. In this study, we used an extensive dataset of 
blueberry pollination studies to explore the following research 
questions:  

1. To what extent are two common blueberry cultivars pollen limited?  

2. Does bee visitation or bee richness reduce pollination deficits of 
these two cultivars? 

2. Materials and methods 

2.1. Literature review 

A systematic literature search was conducted with Web of Science 
Core Collection as the primary database with the search terms (“blue-
berry” OR “Vaccinium”) AND (“bee” OR “bees” OR “pollin*”). The 
search was finalized on 14 April 2023 and yielded 517 potential studies. 
Each study was screened by reading the title and abstract. For our study, 
we were interested in all studies on pollinators and pollination in two 
northern highbush blueberry cultivars, Bluecrop and Duke. A review of 
blueberry pollination research found that both cultivars have been most 
widely studied in site-replicated studies relevant for our study question 
(Eeraerts et al., 2023a) and both cultivars are widely planted and of 
commercial importance across multiple blueberry production regions. 
During the initial screening, studies not performed in blueberry, or not 
referring to insect pollinators or insect-mediated pollination were 
excluded. 

Next, the full texts of the remaining studies were reviewed for po-
tential inclusion in the analyses. Here, we applied the following study 
selection criteria: 1) studies had to conduct a pollinator survey in 
commercial blueberry fields under open-field conditions (i.e., no 
experimental greenhouse/tunnel studies), 2) measurements were made 
of blueberry pollination (i.e., fruit set, fruit weight and/or seed number), 
3) pollination-related variables had to be measured under open-field 
conditions, and with the inclusion of a supplementary hand pollina-
tion treatment, 4) pollination and pollinator measurements had to be 
conducted on the cultivars Bluecrop and/or Duke, and, 5) a minimum of 
5 blueberry fields had to be included per study. Additionally, during full 
text review, the reference list of each publication was checked to find 
additional studies. This selection process is illustrated in the PRISMA 
flow diagram (Fig. S1). 

2.2. Data collection 

Data from 8 published studies were requested through contacting the 
data-holders and requesting the raw data. A success rate of 87.5% was 
achieved with these data requests, with data collected from another 4 
additional unpublished studies identified by Eeraerts et al. (2023a) 
(Tables S1, S2). Raw data on blueberry pollination and bee visitation 
were collected from these studies as average values per field per year per 
cultivar (cfr. Eeraerts et al., 2023a). Bee visitation data were grouped 
into honey bee visitation and wild bee visitation. In these studies, bee 
visitation was measured using insect nets or scan sampling (Tables S1, 
S2). We focused on honey bees and wild bees as they are the main 
pollinators of blueberry (DeVetter et al., 2022; Eeraerts et al., 2023a). In 
addition, most studies identified bee specimens to species, genus or 
morphospecies (Table S1), which enabled us to extract bee richness 
values per field. 

For the blueberry pollination measurements, we collected data from 
studies comparing different pollination treatments: 1) open pollination 
(i.e., flowers exposed to insect pollinators), and 2) hand pollination (i.e., 
flowers exposed to insect pollinators and pollen-supplemented by hand). 
For the hand pollination treatment, self-pollen was used in most studies, 
but some studies used cross-pollen from a different cultivar or used a mix 
of self- and cross-pollen (Table S1). For pollination measurements, berry 
data were collected just before commercial harvest. The pollination 
metrics considered were percentage fruit set, berry weight and number 
of viable seeds per berry (hereafter “seed set”). With these data, the 
pollination deficit of each pollination metric was determined as the 
difference between the open and the hand pollination treatment, and 
this difference was interpreted as the amount of pollen tetrads missing 
on stigmas to reach the maximum values of pollination metrics (Garratt 
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et al., 2021; Eeraerts et al., 2023a). 

2.3. Data analyses 

Because different research teams used different methods in the 
studies from which we collected raw data, it was necessary to stan-
dardize the data to allow comparisons among studies. Accordingly, 
pollination data of both the open and hand pollination treatments were 
standardized between 0 and 1 per yield metric and per study (y = (x – 
xmin)/(xmax-xmin)) (i.e., xmin is the smallest value for both pollination 
treatments per study). Hence, the fixed effect estimates from the model 
could be interpreted as effect sizes for comparison. Afterwards, the 
pollination deficit per field was determined as the difference between 
hand and open pollination treatments. Here, a positive value indicates a 
pollination deficit, and a zero or negative value indicates no pollination 
deficit. The extent of the pollination deficit was assessed with a linear 
mixed-effects model (LME; function lme, package nlme). 

First, for each pollination metric we tested if the pollination deficit 
was different between the two cultivars. Here, cultivar was specified as a 
fixed variable and site ID nested within study ID were included as 
random factors. Second, for each pollination metric, we also tested a no- 
intercept model with cultivar as the fixed factor to infer if the mean 
pollination deficit of a cultivar was different from zero. Site ID nested 
within study ID were both added to the model as random factors. 

Both honey bee and wild bee visitation data were also standardized 
between 0 and 1 per study. To account for variable pollination contri-
butions of both wild bees and honey bees (Benjamin and Winfree, 2014; 
Eeraerts et al., 2020, 2023a), total bee visitation per field was deter-
mined as the sum of the standardized wild bee visitation and the stan-
dardized honey bee visitation (hence, the theoretical maximum value of 
total bee visitation is 2). Both honey bees and wild bees contribute 
considerably to blueberry pollination (Gibbs et al., 2016; Eeraerts et al., 
2023a). Hence, for this self-compatible crop, we were interested in 
testing and comparing linear and non-linear models of total visitation as 
this has relevant management applications (see Reilly et al., (2020); 
Beyer et al., (2022); Mateos-Fierro et al. (2023) for similar approaches). 
The relation between total bee visitation and pollination deficit was 
examined by comparing three different models: i) a null model, ii) a 
linear model (LME; y = a-b*x) and iii) a negative exponential model (y =
a*e^(-b*x)). Site ID nested within study ID were added as random factors 
in all three models. We tested the three different models for each 
pollination metric and for each cultivar separately and ranked them 
based on their AICC. For each pollination metric and each cultivar, the 
best model with the lowest AICC was reported (ΔAICC >2). Similarly, the 
relation between bee richness and pollination deficit was examined by 
comparing the above-mentioned three models for each pollination 
metric and each cultivar. Bee richness was determined as the number of 
bee species or morphospecies per site, and richness was standardized 
between 0 and 1 per study before analyses. 

Using cross-pollen from another cultivar for the hand pollination 
treatment might exacerbate pollination deficits compared to using self- 
pollen (i.e., cross-pollination vs self-pollination; see DeVetter et al., 
2022). Hence, analyses were conducted with or without data using 
cross-pollen for hand pollination (Table S1). Model fit was evaluated 
visually by checking the normality of the model residuals (quantile--
quantile plot, plot of the residuals versus the fitted values and Lilliefors 
test). All analyses were performed with R, version 4.2.0 R Development 
Core Team, 2022). 

3. Results 

Data were collected from a total of 286 sites, amounting to 256, 286 
and 133 sites for pollination deficit analyses for fruit set, berry weight 
and seed set analyses, respectively (Table S1). A total of 179 sites with 
‘Bluecrop’, and 107 sites with ‘Duke’. Most studies were conducted in 
the USA (176 sites), followed by Canada (55 sites), Spain (40), and the 

Netherlands (15). Within the USA, Michigan provided data from 82 
sites, Oregon 28 sites, Washington 26 sites, New Jersey 23 sites, and 
Vermont 17 sites (see Table S1 for a complete overview). 

Pollination deficit for fruit set was not different between the two 
cultivars (F = 4.24, p = 0.06). No significant pollination deficits were 
observed for fruit set over the average of all locations and studies for 
both ‘Bluecrop’ and ‘Duke’, yet for ‘Bluecrop’ this was only marginally 
non-significant (Table 1; Fig. 1A). Pollination deficits for berry weight 
and seed set were different between the two cultivars (berry weight: F =
21.28, p < 0.001; seed set: F = 12.93, p = 0.011). For ‘Bluecrop’, sig-
nificant pollination deficits were detected over the average of all loca-
tions and studies for both berry weight and seed set, whereas for ‘Duke’ 
these deficits were not significantly different from zero (Table 1; 
Figs. 1B, C). 

Total bee visitation did not affect the pollination deficit for fruit set 
as the null model was the best model for both cultivars (Table 2, S3). For 
‘Bluecrop’, the negative exponential model best explained the relation 
between total bee visitation and both the berry weight and seed set 
deficits (Fig. 2; Table 2, S3). In contrast, for ‘Duke’, no clear relation was 
detected as no model outperformed the null model (Table 2, S3). For 
both cultivars, bee species richness did not show any relation with any of 
the pollination metrics (Table S4). 

Analyses excluding data using cross-pollen for the hand pollination 
treatment gave the same results (Tables S5, S6, S7, S8). 

4. Discussion 

By analyzing data from studies conducted across various locations, 
we conclude that pollination deficits vary between cultivars, a result 
that is in line with case studies and crop-specific syntheses (Benjamin 
and Winfree, 2014; Hudewenz et al., 2014; Bishop et al., 2020; Bishop 
and Nakagawa, 2021; Garratt et al., 2021; Burns and Stanley, 2022; 
Olhnuud et al., 2022). More specifically, Button and Elle (2014) re-
ported that pollination deficits are also greater for ‘Bluecrop’ compared 
to ‘Duke’. Experimental studies that compare no, self- and 
cross-pollination for different blueberry cultivars also conclude variable 
qualitative pollination requirements between cultivars (DeVetter et al., 
2022 and references therein). As observational studies on this topic are 
scarce, the number of studies in ‘Bluecrop’ and ‘Duke’ provide the op-
portunity to synthesize this variability across multiple studies, without 
the cultivar effect being confounded with study ID or study region 
(Bishop and Nakagawa, 2021; Olhnuud et al., 2022). As such, our syn-
thesis provides robust evidence that insect-mediated pollination limits 
crop yield depending on the cultivar grown. However, we advise that 
more studies include multiple cultivars in order to facilitate additional 
broader and robust cultivar comparisons in the future. 

As in other studies (e.g., Garratt et al., 2021), we found evidence of 
cultivar variability in pollination deficits. Blueberry is self-compatible, 
and so it is possible that all flowers set fruits with self-pollination and 
pollination deficits are low (Gibbs et al., 2016; Eeraerts et al., 2023b). 
However, low or no pollination deficits of fruit set can nevertheless 
cascade into decreased fruit weight, as very high fruit set or fruit number 
per plant might reduce the amount of resources the plant can partition to 
individual fruits and consequently reduce fruit weight (see Strik et al., 

Table 1 
Model assessing blueberry pollination deficits for fruit set, berry weight and seed 
set of ‘Bluecrop’ and ‘Duke’. Reported are the model estimates, standard error 
(SE), t-statistics and P-values.  

Response Cultivar estimate SE t P 

Fruit set deficit Bluecrop  0.062  0.028  2.21 0.06  
Duke  0.056  0.030  1.90 0.09 

Berry weight deficit Bluecrop  0.11  0.022  4.81 < 0.001  
Duke  0.035  0.024  1.45 0.15 

Seed set deficit Bluecrop  0.15  0.031  4.74 < 0.01  
Duke  0.071  0.038  1.84 0.12  
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2003; Spornberger et al. 2011; Samnegård et al., 2019). Future assess-
ment of pollination deficits should encompass further method stan-
dardization and consider possible interactions with horticultural 
management to study resource limitation (Tamburini et al., 2019; Gar-
ratt et al., 2021). 

The observed variability of pollination deficits between two cultivars 
can be understood through three mechanisms, 1) the ‘pollination de-
mand’, 2) the ‘ability to be pollinated’, and 3) the ‘flowers:plant re-
sources ratio’. Cultivars can have variable pollination demands, i.e. one 
cultivar can need the deposition of more pollen onto the stigma to 
fertilize all the ovules, compared to another for several reasons: (i) the 
cultivar has a lower degree of parthenocarpy (Knapp et al., 2017; Strik 
and Vance, 2019; DeVetter et al., 2022), (ii) there are fewer ovules per 
flower to fertilize (Moore et al., 1972; Knight et al., 2005; Burns et al., 
2019; Strik and Vance, 2019), (iii) the period of pistil receptivity is 
shorter (Sanzol and Herrero, 2001; Chabert et al., 2018), (iv) pollen has 
lower viability, germination rate, and/or the pollen tubes have a lesser 
ability to reach the ovary (e.g., Walters and Isaacs, 2023), or (v) 
self-pollination can result in higher ovule abortion due to early-acting 
inbreeding depression if the species, such as blueberry, is 
self-compatible but more self-sterile (Aizen and Harder, 2007; Gibbs, 
2014; DeVetter et al., 2022; Krebs and Hancock, 1990). On the other 

hand, one cultivar can experience a lower ability to be pollinated by 
autonomous self-pollination, wind or pollinator visitation compared to 
another one, due to: (i) a lower pollen production per flower (Santiago 
et al., 2021) that can affect the number of pollen grains deposited on the 
stigma by autonomous self-pollination, (ii) flower morphology being 
less favorable for autonomous self-pollination (e.g., if stigma is further 
from anthers), wind pollination (e.g., if stigma protrudes from the 
corolla), or for attracting pollinators through harder access to the nectar 
and pollen resources (Courcelles et al., 2013; Sampson et al., 2013; 
Prasifka et al., 2018), (iii) a lower production of floral rewards leading to 
a lower attractiveness to pollinators (Prasifka et al., 2018), or (iv) less 
favorable bloom phenology that is asynchronous with the phenology of 
the pollinator community (Button and Elle, 2014; Eeraerts, 2022). 
Finally, a cultivar can have variable flowers:plant resources ratios. It is a 
relatively common among angiosperms that plants are able to produce 
many more flowers than they have resources to set them into fruits 
(Knight et al., 2005), especially in self-compatible species that experi-
ence embryo abortion due to genetic load through early-acting 
inbreeding depression such as blueberry (Porcher and Lande, 2005; 
Harder and Johnson, 2023). 

In the specific case of ‘Bluecrop’ and ‘Duke’, the difference could 
possibly be attributed to the differences in flower dimensions. Compared 

Fig. 1. Pollination deficits for A) fruit set, B) berry weight and C) seed set of ‘Bluecrop’ and ‘Duke’ in red and blue, respectively. The shaded points indicate the raw 
data, the bold dots and bold lines indicate the means and 95% confidence intervals. 

Table 2 
Linear mixed-effect models assessing the effect of total bee visitation (bees) on highbush blueberry pollination deficits for fruit set, berry weight and seed set. For each 
response, a null model, a linear model and a negative exponential model was tested per cultivar. Only the best models are reported with their model estimates, standard 
errors (SE), t-statistics, P-values and ΔAICc are given. ΔAICc is the difference between the AICc of the model with the lowest AICc and the AICc of the model with the 
second lowest AICc.  

Response Cultivar Best model ΔAICc Fixed factor estimate SE t P 

Fruit set deficit Bluecrop Null  2.95          
Duke Null  4.49         

Berry weight deficit Bluecrop Exponential  5.95 exp(-bees)  0.32  0.061  5.24 < 0.001  
Duke Null  2.15         

Seed set deficit Bluecrop Exponential  1.88 exp(-bees)  0.28  0.09  3.15 < 0.01  
Duke Null  1.43          
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to ‘Bluecrop’, ‘Duke’ bears flowers with a larger corolla aperture 
diameter (i.e., variable pollination ability; Courcelles et al., 2013; Castro 
et al., 2023), and ‘Duke’ is probably more readily visited by honey bees 
and less subject to nectar-robbing. In addition, ‘Duke’ is also more 
sensitive to early-acting inbreeding depression following self-pollination 
than ‘Bluecrop’ (i.e., variable pollination ability; Chabert S. unpublished 
data), meaning that pollination deficits may have been more under-
estimated for ‘Duke’ compared to ‘Bluecrop’ when hand pollinations 
treatments with self-pollen are applied. Variable pollination demand 
and flowers-plant ratio might also be relevant, yet currently we lack data 
on these mechanisms in blueberry. 

This is the first synthesis that models the relation between pollina-
tion deficits and pollinator visitation across different cultivars of a single 
crop across multiple studies. The cultivar-dependent relation that we 
found between berry weight and seed set deficits and bee visitation is 
similar to case studies in blueberry (Button and Elle, 2014) and in other 
crops as well (Hudewenz et al., 2014; Bishop et al., 2020). Button and 
Elle (2014) found that wild bee visitation decreased berry weight defi-
cits of ‘Bluecrop’, but not for ‘Duke’. These findings, together with our 
results, emphasize the need for more studies to include multiple culti-
vars to better match pollinator management to the pollination re-
quirements of different cultivars of a single crop. For ‘Duke’ and fruit set 
of ‘Bluecrop’, we did not detect a clear relation between pollination 
deficit and bee visitation. Yet, in such cases, when no average pollina-
tion deficits are detected, further improving crop yield might require 
management measures beyond pollinator management (e.g., fertiliza-
tion, irrigation; Marini et al., 2015; Tamburini et al., 2019). For both 
cultivars, bee richness did not appear to be related to any pollination 
metric. Indeed, the pollination services provided of wild pollinators are 
often driven by the contributions of more abundant and more common 
species compared to less abundant and rarer species (Kleijn et al., 2015). 
Yet, the latter often make up most of the richness in a field, but they do 
not always contribute considerably to pollination. Indeed, the more 
common and abundant wild pollinators still have a very important role 
to play as they contribute considerably to crop production (Kleijn et al., 
2015). On the other hand, the lack of a richness effect may also be 
explained by the fact that some studies identified wild bees only to genus 
or morphospecies level, so the gradient of bee richness was less pro-
nounced in some studies, making it more difficult to detect a significant 
effect. 

The non-linear relation between bee visitation and pollination 

deficits for ‘Bluecrop’ detected in this study is in line with recent studies 
using non-linear models to infer this relation in crops (e.g., Nicholson 
and Ricketts, 2019; Reilly et al., 2020; Chabert et al., 2022; Eeraerts, 
2023). Based on our synthesis, maximal pollination success is achieved 
in these observational studies for ‘Duke’, while for ‘Bluecrop’ pollination 
success can be further improved with increasing bee visitation rates up 
to a certain threshold. Determining these optimal bee visitation 
thresholds should be subject of future studies, as determining a 
threshold with standardized data of different studies like this study is 
useful, but merely conceptual (but see Chabert et al., 2022; Eeraerts, 
2023). In any case, this non-linear relation suggests that there is an 
optimal visitation rate beyond which additional visitation does not 
further minimize pollination deficits. Determining this optimum visita-
tion rate for commercially important crops and cultivars is needed to 
improve cost-effective pollination management and crop yield. 
Depending on the region-specific-context bee visitation can be achieved 
with wild bees, managed (honey) bees or both for blueberry (Gibbs 
et al., 2016; Mallinger et al., 2021; Eeraerts et al., 2023b) or other crops 
(Reilly et al., 2020; Eeraerts et al., 2022; Pisman et al., 2022). Here, 
landscape and habitat management benefits pollination services, but 
they can also contribute to wild pollinator conservation (Hass et al., 
2018; Eeraerts, 2023; Mateos-Fierro et al. 2023). For 
pollinator-dependent crops like fruit or vegetable crops it is a common 
practice to combine different cultivars into a single field, farm, or 
landscape. Given the extent of sites with pollination deficits, our results 
suggest there are opportunities to use certain cultivars that are less 
dependent on insects for pollination in landscapes where pollination 
services have been compromised. In contrast, cultivars that have a 
higher pollination dependency may be used in landscapes with diverse 
and abundant pollinator communities. 

5. Conclusion 

With this synthesis we conclude that pollination deficits are variable 
across different cultivars of a single crop, and, for specific cultivars 
experiencing high deficits, enhancing pollinator visitation to crop 
flowers has the potential to mitigate these deficits. Despite the global 
importance of insect-mediated pollination for optimal crop yield, and 
the widespread cultivation of different cultivars within and across pro-
duction regions, few studies have synthesized this cultivar-variability of 
pollination deficits and its link with pollinator visitation. We have used 

Fig. 2. Relation between total bee visitation and A) berry weight deficit and B) seed set deficit for the highbush blueberry cultivar ‘Bluecrop’, as modeled by a 
negative exponential relation. The solid line shows the significant relation, the grey shaded area shows the 95% confidence interval and the dots show the raw data. 
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two self-compatible blueberry cultivars as a model system, but we sug-
gest that this approach needs to be applied to other insect-pollinated 
crops, including cultivars and crops that are self-incompatible and 
have greater pollination requirements. 
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Spornberger, A., Leder, L., Böck, K., Keppel, H., Modl, P., 2011. Auswirkungen von 
Ausdünnungsmaßnahmen auf Ertragsparameter, Krankheitsbefall und Fruchtqualität 
von Süßkirschen (Prunus avium L.) unter Ökologischen Anbaubedingungen. 
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